1. 首页
  2. Leetcode经典148题

leetCode-4-Median-of-Two-Sorted-Arrays

题目描述(困难难度)

leetCode-4-Median-of-Two-Sorted-Arrays

已知两个有序数组,找到两个数组合并后的中位数。

解法一

简单粗暴,先将两个数组合并,两个有序数组的合并也是归并排序中的一部分。然后根据奇数,还是偶数,返回中位数。

代码

public double findMedianSortedArrays(int[] nums1, int[] nums2) {
    int[] nums;
    int m = nums1.length;
    int n = nums2.length;
    nums = new int[m + n];
    if (m == 0) {
        if (n % 2 == 0) {
            return (nums2[n / 2 - 1] + nums2[n / 2]) / 2.0;
        } else {

            return nums2[n / 2];
        }
    }
    if (n == 0) {
        if (m % 2 == 0) {
            return (nums1[m / 2 - 1] + nums1[m / 2]) / 2.0;
        } else {
            return nums1[m / 2];
        }
    }

    int count = 0;
    int i = 0, j = 0;
    while (count != (m + n)) {
        if (i == m) {
            while (j != n) {
                nums[count++] = nums2[j++];
            }
            break;
        }
        if (j == n) {
            while (i != m) {
                nums[count++] = nums1[i++];
            }
            break;
        }

        if (nums1[i] < nums2[j]) {
            nums[count++] = nums1[i++];
        } else {
            nums[count++] = nums2[j++];
        }
    }

    if (count % 2 == 0) {
        return (nums[count / 2 - 1] + nums[count / 2]) / 2.0;
    } else {
        return nums[count / 2];
    }
}

时间复杂度:遍历全部数组,O(m + n)

空间复杂度:开辟了一个数组,保存合并后的两个数组,O(m + n)

解法二

其实,我们不需要将两个数组真的合并,我们只需要找到中位数在哪里就可以了。

开始的思路是写一个循环,然后里边判断是否到了中位数的位置,到了就返回结果,但这里对偶数和奇数的分类会很麻烦。当其中一个数组遍历完后,出了 for 循环对边界的判断也会分几种情况。总体来说,虽然复杂度不影响,但代码会看起来很乱。然后在 这里 找到了另一种思路。

首先是怎么将奇数和偶数的情况合并一下。

用 len 表示合并后数组的长度,如果是奇数,我们需要知道第 (len + 1)/ 2 个数就可以了,如果遍历的话需要遍历 int ( len / 2 ) + 1 次。如果是偶数,我们需要知道第 len / 2 和 len / 2 + 1 个数,也是需要遍历 len / 2 + 1 次。所以遍历的话,奇数和偶数都是 len / 2 + 1 次。

返回中位数的话,奇数需要最后一次遍历的结果就可以了,偶数需要最后一次和上一次遍历的结果。所以我们用两个变量 left 和 right ,right 保存当前循环的结果,在每次循环前将 right 的值赋给 left 。这样在最后一次循环的时候,left 将得到 right 的值,也就是上一次循环的结果,接下来 right 更新为最后一次的结果。

循环中该怎么写,什么时候 A 数组后移,什么时候 B 数组后移。用 aStart 和 bStart 分别表示当前指向 A 数组和 B 数组的位置。如果 aStart 还没有到最后并且此时 A 位置的数字小于 B 位置的数组,那么就可以后移了。也就是aStart < m && A[aStart] < B[bStart]。

但如果 B 数组此刻已经没有数字了,继续取数字B [ bStart ],则会越界,所以判断下 bStart 是否大于数组长度了,这样 || 后边的就不会执行了,也就不会导致错误了,所以增加为 aStart < m && ( bStart >= n || A [ aStart ] < B [ bStart ] ) 。

代码

public double findMedianSortedArrays(int[] A, int[] B) {
    int m = A.length;
    int n = B.length;
    int len = m + n;
    int left = -1, right = -1;
    int aStart = 0, bStart = 0;
    for (int i = 0; i <= len / 2; i++) {
        left = right;
        if (aStart < m && (bStart >= n || A[aStart] < B[bStart])) {
            right = A[aStart++];
        } else {
            right = B[bStart++];
        }
    }
    if ((len & 1) == 0)
        return (left + right) / 2.0;
    else
        return right;
}

时间复杂度:遍历 len/2 + 1 次,len = m + n ,所以时间复杂度依旧是 O(m + n)。

空间复杂度:我们申请了常数个变量,也就是 m,n,len,left,right,aStart,bStart 以及 i 。

总共 8 个变量,所以空间复杂度是 O(1)。

解法三

上边的两种思路,时间复杂度都达不到题目的要求 O ( log ( m + n ) )。看到 log ,很明显,我们只有用到二分的方法才能达到。我们不妨用另一种思路,题目是求中位数,其实就是求第 k 小数的一种特殊情况,而求第 k 小数有一种算法。

解法二中,我们一次遍历就相当于去掉不可能是中位数的一个值,也就是一个一个排除。由于数列是有序的,其实我们完全可以一半儿一半儿的排除。假设我们要找第 k 小数,我们可以每次循环排除掉 k / 2 个数。看下边一个例子。

假设我们要找第 7 小的数字。

leetCode-4-Median-of-Two-Sorted-Arrays

我们比较两个数组的第 k / 2 个数字,如果 k 是奇数,向下取整。也就是比较第 3 个数字,上边数组中的 4 和 下边数组中的 3 ,如果哪个小,就表明该数组的前 k / 2 个数字都不是第 k 小数字,所以可以排除。也就是 1,2,3 这三个数字不可能是第 7 小的数字,我们可以把它排除掉。将 1349 和 45678910 两个数组作为新的数组进行比较。

更一般的情况 A [ 1 ],A [ 2 ],A [ 3 ],A [ k / 2] … ,B[ 1 ],B [ 2 ],B [ 3 ],B[ k / 2] … ,如果 A [ k / 2 ] < B [ k / 2 ] ,那么 A [ 1 ],A [ 2 ],A [ 3 ],A [ k / 2] 都不可能是第 k 小的数字。

A 数组中比 A [ k / 2 ] 小的数有 k / 2 – 1 个,B 数组中,B [ k / 2 ] 比 A [ k / 2 ] 大,假设 B [ k / 2 ] 前边的数字都比 A [ k / 2 ] 小,也只有 k / 2 – 1 个,所以比 A [ k / 2 ] 小的数字最多有 k / 2 – 1 + k / 2 – 1 = k – 2 个,所以 A [ k / 2 ] 最多是第 k – 1 小的数。而比 A [ k / 2 ] 小的数更不可能是第 k 小的数了,所以可以把它们排除。

橙色的部分表示已经去掉的数字。

leetCode-4-Median-of-Two-Sorted-Arrays

由于我们已经排除掉了 3 个数字,就是这 3 个数字一定在最前边,所以在两个新数组中,我们只需要找第 7 – 3 = 4 小的数字就可以了,也就是 k = 4 。此时两个数组,比较第 2 个数字,3 < 5,所以我们可以把小的那个数组中的 1 ,3 排除掉了。

leetCode-4-Median-of-Two-Sorted-Arrays

我们又排除掉 2 个数字,所以现在找第 4 – 2 = 2 小的数字就可以了。此时比较两个数组中的第 k / 2 = 1 个数,4 == 4 ,怎么办呢?由于两个数相等,所以我们无论去掉哪个数组中的都行,因为去掉 1 个总会保留 1 个的,所以没有影响。为了统一,我们就假设 4 > 4 吧,所以此时将下边的 4 去掉。

leetCode-4-Median-of-Two-Sorted-Arrays

由于又去掉 1 个数字,此时我们要找第 1 小的数字,所以只需判断两个数组中第一个数字哪个小就可以了,也就是 4 。

所以第 7 小的数字是 4 。

我们每次都是取 k / 2 的数进行比较,有时候可能会遇到数组长度小于 k / 2 的时候。

leetCode-4-Median-of-Two-Sorted-Arrays

此时 k / 2 等于 3 ,而上边的数组长度是 2 ,我们此时将箭头指向它的末尾就可以了。这样的话,由于 2 < 3 ,所以就会导致上边的数组 1,2 都被排除。造成下边的情况。

leetCode-4-Median-of-Two-Sorted-Arrays

由于 2 个元素被排除,所以此时 k = 5 ,又由于上边的数组已经空了,我们只需要返回下边的数组的第 5 个数字就可以了。

从上边可以看到,无论是找第奇数个还是第偶数个数字,对我们的算法并没有影响,而且在算法进行中,k 的值都有可能从奇数变为偶数,最终都会变为 1 或者由于一个数组空了,直接返回结果。

所以我们采用递归的思路,为了防止数组长度小于 k / 2 ,所以每次比较 min ( k / 2,len ( 数组 ) ) 对应的数字,把小的那个对应的数组的数字排除,将两个新数组进入递归,并且 k 要减去排除的数字的个数。递归出口就是当 k = 1 或者其中一个数字长度是 0 了。

代码

public double findMedianSortedArrays(int[] nums1, int[] nums2) {
    int n = nums1.length;
    int m = nums2.length;
    int left = (n + m + 1) / 2;
    int right = (n + m + 2) / 2;
    //将偶数和奇数的情况合并,如果是奇数,会求两次同样的 k 。
    return (getKth(nums1, 0, n - 1, nums2, 0, m - 1, left) + getKth(nums1, 0, n - 1, nums2, 0, m - 1, right)) * 0.5;  
}

    private int getKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k) {
        int len1 = end1 - start1 + 1;
        int len2 = end2 - start2 + 1;
        //让 len1 的长度小于 len2,这样就能保证如果有数组空了,一定是 len1 
        if (len1 > len2) return getKth(nums2, start2, end2, nums1, start1, end1, k);
        if (len1 == 0) return nums2[start2 + k - 1];

        if (k == 1) return Math.min(nums1[start1], nums2[start2]);

        int i = start1 + Math.min(len1, k / 2) - 1;
        int j = start2 + Math.min(len2, k / 2) - 1;

        if (nums1[i] > nums2[j]) {
            return getKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));
        }
        else {
            return getKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));
        }
    }

时间复杂度:每进行一次循环,我们就减少 k / 2 个元素,所以时间复杂度是 O(log(k)),而 k = (m + n)/ 2 ,所以最终的复杂也就是 O(log(m + n))。

空间复杂度:虽然我们用到了递归,但是可以看到这个递归属于尾递归,所以编译器不需要不停地堆栈,所以空间复杂度为 O(1)。

解法四

我们首先理一下中位数的定义是什么

中位数(又称中值,英语:Median),统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。

所以我们只需要将数组进行切。

一个长度为 m 的数组,有 0 到 m 总共 m + 1 个位置可以切。

leetCode-4-Median-of-Two-Sorted-Arrays

我们把数组 A 和数组 B 分别在 i 和 j 进行切割。

leetCode-4-Median-of-Two-Sorted-Arrays

将 i 的左边和 j 的左边组合成「左半部分」,将 i 的右边和 j 的右边组合成「右半部分」。

  • 当 A 数组和 B 数组的总长度是偶数时,如果我们能够保证
    • 左半部分的长度等于右半部分

      i + j = m – i + n – j , 也就是 j = ( m + n ) / 2 – i

    • 左半部分最大的值小于等于右半部分最小的值 max ( A [ i – 1 ] , B [ j – 1 ])) <= min ( A [ i ] , B [ j ]))

      那么,中位数就可以表示如下

      (左半部分最大值 + 右半部分最小值 )/ 2 。

      (max ( A [ i – 1 ] , B [ j – 1 ])+ min ( A [ i ] , B [ j ])) / 2

  • 当 A 数组和 B 数组的总长度是奇数时,如果我们能够保证

    • 左半部分的长度比右半部分大 1

      i + j = m – i + n – j + 1也就是 j = ( m + n + 1) / 2 – i

    • 左半部分最大的值小于等于右半部分最小的值 max ( A [ i – 1 ] , B [ j – 1 ])) <= min ( A [ i ] , B [ j ]))

      那么,中位数就是

      左半部分最大值,也就是左半部比右半部分多出的那一个数。

      max ( A [ i – 1 ] , B [ j – 1 ])

上边的第一个条件我们其实可以合并为 j = ( m + n + 1) / 2 – i,因为如果 m + n 是偶数,由于我们取的是 int 值,所以加 1 也不会影响结果。当然,由于 0 <= i <= m ,为了保证 0 <= j <= n ,我们必须保证 m <= n 。

m\leq n,i(m+m+1)/2-m=0

m\leq n,i>0,j=(m+n+1)/2-i\leq (n+n+1)/2-i<(n+n+1)/2=n

最后一步由于是 int 间的运算,所以 1 / 2 = 0。

而对于第二个条件,奇数和偶数的情况是一样的,我们进一步分析。为了保证 max ( A [ i – 1 ] , B [ j – 1 ])) <= min ( A [ i ] , B [ j ])),因为 A 数组和 B 数组是有序的,所以 A [ i – 1 ] <= A [ i ],B [ i – 1 ] <= B [ i ] 这是天然的,所以我们只需要保证 B [ j – 1 ] < = A [ i ] 和 A [ i – 1 ] <= B [ j ] 所以我们分两种情况讨论:

  • B [ j – 1 ] > A [ i ],并且为了不越界,要保证 j != 0,i != m

    leetCode-4-Median-of-Two-Sorted-Arrays

    此时很明显,我们需要增加 i ,为了数量的平衡还要减少 j ,幸运的是 j = ( m + n + 1) / 2 – i,i 增大,j 自然会减少。

  • A [ i – 1 ] > B [ j ] ,并且为了不越界,要保证 i != 0,j != n

    leetCode-4-Median-of-Two-Sorted-Arrays

    此时和上边的情况相反,我们要减少 i ,增大 j 。

上边两种情况,我们把边界都排除了,需要单独讨论。

  • 当 i = 0 , 或者 j = 0 ,也就是切在了最前边。

    leetCode-4-Median-of-Two-Sorted-Arrays

    此时左半部分当 j = 0 时,最大的值就是 A [ i – 1 ] ;当 i = 0 时 最大的值就是 B [ j – 1] 。右半部分最小值和之前一样。

  • 当 i = m 或者 j = n ,也就是切在了最后边。

    leetCode-4-Median-of-Two-Sorted-Arrays

    此时左半部分最大值和之前一样。右半部分当 j = n 时,最小值就是 A [ i ] ;当 i = m 时,最小值就是B [ j ] 。

    所有的思路都理清了,最后一个问题,增加 i 的方式。当然用二分了。初始化 i 为中间的值,然后减半找中间的,减半找中间的,减半找中间的直到答案。

class Solution {
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { 
            return findMedianSortedArrays(B,A); // 保证 m <= n
        }
        int iMin = 0, iMax = m;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = (m + n + 1) / 2 - i;
            if (j != 0 && i != m && B[j-1] > A[i]){ // i 需要增大
                iMin = i + 1; 
            }
            else if (i != 0 && j != n && A[i-1] > B[j]) { // i 需要减小
                iMax = i - 1; 
            }
            else { // 达到要求,并且将边界条件列出来单独考虑
                int maxLeft = 0;
                if (i == 0) { maxLeft = B[j-1]; }
                else if (j == 0) { maxLeft = A[i-1]; }
                else { maxLeft = Math.max(A[i-1], B[j-1]); }
                if ( (m + n) % 2 == 1 ) { return maxLeft; } // 奇数的话不需要考虑右半部分

                int minRight = 0;
                if (i == m) { minRight = B[j]; }
                else if (j == n) { minRight = A[i]; }
                else { minRight = Math.min(B[j], A[i]); }

                return (maxLeft + minRight) / 2.0; //如果是偶数的话返回结果
            }
        }
        return 0.0;
    }
}

时间复杂度:我们对较短的数组进行了二分查找,所以时间复杂度是 O(log(min(m,n)))。

空间复杂度:只有一些固定的变量,和数组长度无关,所以空间复杂度是 O ( 1 ) 。

总结

解法二中体会到了对情况的转换,有时候即使有了思路,代码也不一定写的优雅,需要多锻炼才可以。解法三和解法四充分发挥了二分查找的优势,将时间复杂度降为 log 级别。

作者:windliang

来源:https://windliang.cc

看完两件小事

如果你觉得这篇文章对你挺有启发,我想请你帮我两个小忙:

  1. 关注我们的 GitHub 博客,让我们成为长期关系
  2. 把这篇文章分享给你的朋友 / 交流群,让更多的人看到,一起进步,一起成长!
  3. 关注公众号 「方志朋」,公众号后台回复「666」 免费领取我精心整理的进阶资源教程
  4. JS中文网,Javascriptc中文网是中国领先的新一代开发者社区和专业的技术媒体,一个帮助开发者成长的社区,是给开发者用的 Hacker News,技术文章由为你筛选出最优质的干货,其中包括:Android、iOS、前端、后端等方面的内容。目前已经覆盖和服务了超过 300 万开发者,你每天都可以在这里找到技术世界的头条内容。

    本文著作权归作者所有,如若转载,请注明出处

    转载请注明:文章转载自「 Java极客技术学习 」https://www.javajike.com

    标题:leetCode-4-Median-of-Two-Sorted-Arrays

    链接:https://www.javajike.com/article/3144.html

« leetCode-3-Longest-Substring-Without-Repeating-Characters
leetCode-5-Longest-Palindromic-Substring»

相关推荐

QR code