leetCode-32-Longest-Valid-Parentheses
题目描述(困难难度)
给一个一堆括号的字符串,然后返回最长的合法的括号的长度。关于括号的问题,我们在 20 题和 22 题也讨论过。
解法一 暴力解法
列举所有的字符串,然后判断每个字符串是不是符合。当然这里可以做个优化就是,因为合法字符串一定是偶数个,所以可以只列举偶数长度的字符串。列举从 0 开始的,长度是 2、4、6 ……的字符串,列举下标从 1 开始的,长度是 2、4、6 ……的字符串,然后循环下去。当然判断字符串是否符合,利用栈来实现,在之前已经讨论过了。
public boolean isValid(String s) {
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
stack.push('(');
} else if (!stack.empty() && stack.peek() == '(') {
stack.pop();
} else {
return false;
}
}
return stack.empty();
}
public int longestValidParentheses(String s) {
int maxlen = 0;
for (int i = 0; i < s.length(); i++) {
for (int j = i + 2; j <= s.length(); j+=2) {
if (isValid(s.substring(i, j))) {
maxlen = Math.max(maxlen, j - i);
}
}
}
return maxlen;
}
时间复杂度: 列举字符串是 O(n²),判断是否是合法序列是 O(n),所以总共是 O(n³)。
空间复杂度:O(n),每次判断的时候,栈的大小。
这个算法,leetCode 会报时间超时。
解法二 暴力破解优化
解法一中,我们会做很多重复的判断,例如类似于这样的,()()(),从下标 0 开始,我们先判断长度为 2 的是否是合法序列。然后再判断长度是 4 的字符串是否符合,但会从下标 0 开始判断。判断长度为 6 的字符串的时候,依旧从 0 开始,但其实之前已经确认前 4 个已经组成了合法序列,所以我们其实从下标 4 开始判断就可以了。
基于此,我们可以换一个思路,我们判断从每个位置开始的最长合法子串是多长即可。而判断是否是合法子串,我们不用栈,而是用一个变量记录当前的括号情况,遇到左括号加 1,遇到右括号减 1,如果变成 0 ,我们就更新下最长合法子串。
public int longestValidParentheses(String s) {
int count = 0;
int max = 0;
for (int i = 0; i < s.length(); i++) {
count = 0;
for (int j = i; j < s.length(); j++) {
if (s.charAt(j) == '(') {
count++;
} else {
count--;
}
//count < 0 说明右括号多了,此时无论后边是什么,一定是非法字符串了,所以可以提前结束循环
if (count < 0) {
break;
}
//当前是合法序列,更新最长长度
if (count == 0) {
if (j - i + 1 > max) {
max = j - i + 1;
}
}
}
}
return max;
}
时间复杂度:O(n²)。
空间复杂度:O(1)。
解法三 动态规划
首先定义动态规划的数组代表什么
dp [ i ] 代表以下标 i 结尾的合法序列的最长长度,例如下图
下标 1 结尾的最长合法字符串长度是 2,下标 3 结尾的最长字符串是 str [ 0 , 3 ],长度是 4 。
我们来分析下 dp 的规律。
首先我们初始化所有的 dp 都等于零。
以左括号结尾的字符串一定是非法序列,所以 dp 是零,不用更改。
以右括号结尾的字符串分两种情况。
- 右括号前边是 ( ,类似于 ……()。
dp [ i ] = dp [ i – 2] + 2 (前一个合法序列的长度,加上当前新增的长度 2)
类似于上图中 index = 3 的时候的情况。
dp [ 3 ] = dp [ 3 – 2 ] + 2 = dp [ 1 ] + 2 = 2 + 2 = 4
-
右括号前边是 ),类似于 ……))。
此时我们需要判断 i – dp[i – 1] – 1 (前一个合法序列的前边一个位置) 是不是左括号。
例如上图的 index = 7 的时候,此时 index – 1 也是右括号,我们需要知道 i – dp[i – 1] – 1 = 7 – dp [ 6 ] – 1 = 4 位置的括号的情况。
而刚好 index = 4 的位置是左括号,此时 dp [ i ] = dp [ i – 1 ] + dp [ i – dp [ i – 1] – 2 ] + 2 (当前位置的前一个合法序列的长度,加上匹配的左括号前边的合法序列的长度,加上新增的长度 2),也就是 dp [ 7 ] = dp [ 7 – 1 ] + dp [ 7 – dp [ 7 – 1] – 2 ] + 2 = dp [ 6 ] + dp [7 – 2 – 2] + 2 = 2 + 4 + 2 = 8。
如果 index = 4 不是左括号,那么此时位置 7 的右括号没有匹配的左括号,所以 dp [ 7 ] = 0 ,不需要更新。
上边的分析可以结合图看一下,可以更好的理解,下边看下代码。
public int longestValidParentheses(String s) {
int maxans = 0;
int dp[] = new int[s.length()];
for (int i = 1; i < s.length(); i++) {
if (s.charAt(i) == ')') {
//右括号前边是左括号
if (s.charAt(i - 1) == '(') {
dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
//右括号前边是右括号,并且除去前边的合法序列的前边是左括号
} else if (i - dp[i - 1] > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
}
maxans = Math.max(maxans, dp[i]);
}
}
return maxans;
}
时间复杂度:遍历了一次,O(n)。
空间复杂度:O(n)。
解法四 使用栈
从左到右扫描字符串,栈顶保存当前扫描的时候,合法序列前的一个位置位置下标是多少,啥意思嘞?
我们扫描到左括号,就将当前位置入栈。
扫描到右括号,就将栈顶出栈(代表栈顶的左括号匹配到了右括号),然后分两种情况。
- 栈不空,那么就用当前的位置减去栈顶的存的位置,然后就得到当前合法序列的长度,然后更新一下最长长度。
-
栈是空的,说明之前没有与之匹配的左括号,那么就将当前的位置入栈。
看下图示,更好的理解一下。
再看下代码
public int longestValidParentheses(String s) {
int maxans = 0;
Stack<Integer> stack = new Stack<>();
stack.push(-1);
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
stack.push(i);
} else {
stack.pop();
if (stack.empty()) {
stack.push(i);
} else {
maxans = Math.max(maxans, i - stack.peek());
}
}
}
return maxans;
}
时间复杂度: O(n)。
空间复杂度:O(n)。
解法五 神奇解法
保持时间复杂度是 O(n),将空间复杂度优化到了 O(1),它的动机是怎么想到的没有理出来,就介绍下它的想法吧。
从左到右扫描,用两个变量 left 和 right 保存的当前的左括号和右括号的个数,都初始化为 0 。
- 如果左括号个数等于右括号个数了,那么就更新合法序列的最长长度。
- 如果左括号个数大于右括号个数了,那么就接着向右边扫描。
- 如果左括号数目小于右括号个数了,那么后边无论是什么,此时都不可能是合法序列了,此时 left 和 right 归 0,然后接着扫描。
从左到右扫描完毕后,同样的方法从右到左再来一次,因为类似这样的情况 ( ( ( ) ) ,如果从左到右扫描到最后,left = 3,right = 2,期间不会出现 left == right。但是如果从右向左扫描,扫描到倒数第二个位置的时候,就会出现 left = 2,right = 2 ,就会得到一种合法序列。
public int longestValidParentheses(String s) {
int left = 0, right = 0, maxlength = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * right);
} else if (right >= left) {
left = right = 0;
}
}
left = right = 0;
for (int i = s.length() - 1; i >= 0; i--) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * left);
} else if (left >= right) {
left = right = 0;
}
}
return maxlength;
}
时间复杂度:O(n)。
空间复杂度:O(1)。
总
这几种算法,暴力破解和动态规划我觉得想的话,还是能分析出来的话,最后两种算法感觉是去挖掘题的本质得到的算法,普适性不是很强。但最后一种算法,从左到右,从右到左,是真的强。
作者:windliang
来源:https://windliang.cc
看完两件小事
如果你觉得这篇文章对你挺有启发,我想请你帮我两个小忙:
- 把这篇文章分享给你的朋友 / 交流群,让更多的人看到,一起进步,一起成长!
- 关注公众号 「方志朋」,公众号后台回复「666」 免费领取我精心整理的进阶资源教程
本文著作权归作者所有,如若转载,请注明出处
转载请注明:文章转载自「 Java极客技术学习 」https://www.javajike.com